Variational Bayesian image restoration with group-sparse modeling of wavelet coefficients

نویسندگان

  • Ganchi Zhang
  • Nick G. Kingsbury
چکیده

Article history: Available online xxxx

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Markov-tree Bayesian Group-sparse Modeling: Efficient Solutions to Large Inverse Problems

In this paper, we propose a new Markov-tree Bayesian modeling of wavelet coefficients. Based on a group-sparse GSM model with 2-layer cascaded Gamma distributions for the variances, the proposed method effectively exploits both intrascale and interscale relationships across wavelet subbands. To determine the posterior distribution, we apply Variational Bayesian inference with a subband adaptive...

متن کامل

International Journal of Computer Vision Image Restoration via Bayesian Structured Sparse Coding: Where Structured Sparsity Meets Gaussian Scale Mixture

Sparse coding has been shown to be relevant to both variational and Bayesian approaches. The regularization parameter in variational image restoration is intrinsically connected with the shape parameters of sparse coefficients' distributions in Bayesian methods. How to tune those parameters in a principled yet spatially adaptive fashion turns out a challenging problem especially for the class o...

متن کامل

The Starlet Transform in Astronomical Data Processing: Application to Source Detection and Image Deconvolution

We begin with traditional source detection algorithms in astronomy. We then introduce the sparsity data model. The starlet wavelet transform serves as our main focus in this article. Sparse modeling, and noise modeling, are described. Applications to object detection and characterization, and to image filtering and deconvolution, are discussed. The multiscale vision model is a further developme...

متن کامل

Starlet Transform in Astronomical Data Processing

We begin with traditional source detection algorithms in astronomy. We then introduce the sparsity datamodel.The starlet wavelet transform serves as ourmain focus in this chapter. Sparse modeling, and noise modeling, are described. Applications to object detection and characterization, and to image filtering and deconvolution, are discussed. The multiscale vision model is a further development ...

متن کامل

Wasserstein Loss for Image Synthesis and Restoration

This paper presents a novel variational approach to impose statistical constraints to the output of both image generation (to perform typically texture synthesis) and image restoration (for instance to achieve denoising and super-resolution) methods. The empirical distributions of linear or non-linear descriptors are imposed to be close to some input distributions by minimizing a Wasserstein lo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Digital Signal Processing

دوره 47  شماره 

صفحات  -

تاریخ انتشار 2015